Consulta de Guías Docentes



Academic Year/course: 2018/19

527 - Master's in Electronic Engineering


Syllabus Information

Academic Year:
2018/19
Subject:
67225 - Electromagnetic Compatibility and Electrical Safety
Faculty / School:
110 - Escuela de Ingeniería y Arquitectura
Degree:
527 - Master's in Electronic Engineering
ECTS:
5.0
Year:
1
Semester:
First semester
Subject Type:
Optional
Module:
---

4.1. Methodological overview

The methodology followed in this course is oriented towards achievement of the learning objectives. A wide range of teaching and learning tasks are implemented, such as lectures, practice sessions, laboratory exercises, and student participation.

  • In lectures, the theoretical contents of the course will be explained.
  • In practice sessions, representative design problems are presented to students who analyse and solve them.
  • Laboratory work with representative scenarios of EMI/EMC/SE will be addressed during the course.

4.2. Learning tasks

The course includes the following learning tasks: 

Classroom activities (1.96 ECTS: 49 hours):

  • A01 Lectures (20 hours). The fundamental contents of the course will be presented and a set of representative problems will be solved. This activity will take place in the classroom. The materials used in the lectures will be available to students at the beginning of the course.
  • A02 Practice sessions (10 hours). In this activity, a set of representative problems will be solved. This activity will take place in the classroom.
  • A03 Laboratory sessions (15 hours). Lab exercises are structured in 5 sessions of 3 hours each. Description of the sessions will be available to students at the beginning of the course. Usually, one or two visits to specialized laboratories working on EMI/EMC and safety are scheduled during the course.
  • A06 Guided assignment (2 hours)
  • A08 Evaluation tests (2 hours)

Autonomous work (3.04 ECTS: 76 hours):

  • A06 Course work (20 hours). Students (alone or in pairs) must solve a problem related to the course contents. A practical orientation is encouraged.
  • A07 Study (56 hours). Time for personal study, exams preparation and tutorials. 

4.3. Syllabus

The course will address the following topics:

SECTION 1. DESIGN FOR EMI/EMC (75%).

  • Fundamentals. EMI generation and coupling. Earth and ground system. EMI/EMC filtering. Design of printed circuits boards (PCBs) for EMI and Signal Integrity. Shielding. Cables. Transients and protection. EMI/EMC special techniques. EMI/EMC problem sets. EMC tests.

SECTION 2. ELECTRICAL SAFETY (25%).

  • Electronic risks. Regulations. CE mark. Symbols. Isolation and high voltages. Materials. Fire and temperature risks. Creepage and clearance. Critical components. PCBs. Cables. Mechanical considerations. RF risks. Safety tests. Earthing. EMC and SAFETY.

4.4. Course planning and calendar

Further information concerning the timetable, classroom, office hours, assessment dates and other details regarding this course, will be provided on the first day of class or please refer to the EINA website. 


Curso Académico: 2018/19

527 - Máster Universitario en Ingeniería Electrónica


Información del Plan Docente

Año académico:
2018/19
Asignatura:
67225 - Compatibilidad electromagnética y seguridad eléctrica
Centro académico:
110 - Escuela de Ingeniería y Arquitectura
Titulación:
527 - Máster Universitario en Ingeniería Electrónica
Créditos:
5.0
Curso:
1
Periodo de impartición:
Primer semestre
Clase de asignatura:
Optativa
Módulo:
---

1.1. Objetivos de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

El objetivo de la asignatura es formar al estudiante para que sea capaz de:

- Abordar el diseño de un equipo o sistema electrónico minimizando el riesgo de tener problemas de Interferencias Electromagnéticas (EMI) y para cumplir la normativa de Compatibilidad Electromagnética (EMC).

- Abordar el diseño de un equipo o sistema electrónico minimizando el riesgo de tener problemas de Seguridad Eléctrica (SE) tanto para los usuarios del mismo como para los instaladores, técnicos de mantenimiento o instalaciones que lo manejen o lo acojan.

- Enfrentarse a un problema de EMI/EMC/SE diagnosticando su origen y proponiendo soluciones al mismo.

- Entender la normativa básica que se exige a nivel nacional e internacional.

- Adquirir conciencia de lo que esta temática supone en recursos temporales y económicos a las empresas del sector eléctrico/electrónico.

- Conocer las técnicas, instalaciones y equipamientos empleados en los ensayos de productos electrónicos.

1.2. Contexto y sentido de la asignatura en la titulación

Esta asignatura forma parte de la materia optativa del Máster Universitario en Ingeniería Electrónica en la rama Sistemas electrónicos de potencia. Además los conocimientos adquiridos son de relevancia para cualquier sistema electrónico por lo que son de aplicación no solo a las asignaturas de esa materia sino también a las de la materia Electrónica para ambientes inteligentes.

Esta asignatura proporciona conocimientos para diseñar, fabricar, instalar y comercializar productos electrónicos minimizando el riesgo de tener problemas de interferencias electromagnéticas o seguridad eléctrica.

Además, el profesorado de la asignatura cuenta con dilatada experiencia en este campo a través de su participación en numerosos proyectos de investigación y desarrollo con empresas y entidades públicas y privadas.

1.3. Recomendaciones para cursar la asignatura

Teniendo en cuenta la formación adquirida en las titulaciones que dan acceso al Máster en Ingeniería Electrónica no es necesario ningún conocimiento adicional para cursar esta materia.

2.1. Competencias

COMPETENCIAS BÁSICAS:

CB6. Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

CB7. Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.

CB10. Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida auto dirigido o autónomo.

COMPETENCIAS GENERALES:

CG1. Capacidad para el modelado físico-matemático, cálculo y simulación en centros tecnológicos y de ingeniería, particularmente en tareas de investigación, desarrollo e innovación en ámbitos relacionados con la Ingeniería Electrónica y campos multidisciplinares afines.

CG2. Capacidad para proyectar y diseñar productos, procesos e instalaciones en el ámbito de la Ingeniería Electrónica.

CG4. Capacidad para abordar con garantías la realización de una tesis doctoral en el ámbito de la Ingeniería Electrónica.

COMPETENCIAS ESPECÍFICAS:

CE3. Capacidad de analizar y diseñar componentes y sistemas electrónicos de potencia avanzados para el procesado de energía con alta eficiencia.

CE4. Capacidad de especificar, caracterizar y diseñar componentes y sistemas electrónicos complejos en aplicaciones industriales y domésticas.

2.2. Resultados de aprendizaje

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

Es capaz de diseñar un equipo o sistema electrónico minimizando los problemas de Interferencias Electromagnéticas (EMI) para cumplir la normativa de Compatibilidad Electromagnética (EMC).

Es capaz de enfrentarse a un problema EMI/EMC, diagnosticando su origen y proponiendo soluciones al mismo.

Es capaz de diseñar un equipo o sistema electrónico que no tenga problemas de Seguridad Eléctrica (SE) y que cumpla la normativa asociada.

Adquiere conciencia de la importancia de esas temáticas para las empresas del sector eléctrico/electrónico.

Conoce las técnicas, instalaciones y equipamientos empleados en los ensayos de productos electrónicos.

2.3. Importancia de los resultados de aprendizaje

Los resultados de aprendizaje que se obtienen son relevantes para un Ingeniero Electrónico o de Telecomunicación debido a la extraordinaria importancia que las temáticas de Interferencias Electromagnéticas, Compatibilidad Electromagnética y Seguridad Eléctrica tienen en los sectores productivos, de instalación, comercialización e investigación relacionados con el sector electrónico.

Esa importancia es tanto desde el punto de vista técnico como de normativa exigida en la Unión Europea y en el resto del mundo.

Así mismo, los conocimientos, aptitudes y habilidades adquiridos a través de esta asignatura, junto con los del resto del Máster en Ingeniería Electrónica, permiten abordar con garantías la realización de una tesis doctoral en el ámbito de EMI/EMC.

3.1. Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion

Examen global con cuestiones teórico prácticas:

Se realizará a final del curso una prueba con cuestiones de tipo test en la que se incluirán cuestiones relativas tanto a los contenidos teóricos como a las prácticas realizadas.

La prueba escrita constará de 25 cuestiones cortas de las que el alumno deberá responder correctamente al menos a 18 de esas cuestiones para ser considerado APTO. Los alumnos que hayan asistido regularmente al menos a un 80% de las sesiones de aula (teoría y problemas) serán considerados APTOS sin obligación de realizar esa prueba. La consideración de APTO aporta un 25% de la calificación final de la asignatura. Es obligatorio conseguir esta calificación de APTO para aprobar la asignatura.

Asistencia y evaluación de las prácticas y/o trabajos de asignatura:

Se evaluará el trabajo realizado en las sesiones desarrolladas en el laboratorio y en el tiempo de trabajo no presencial del estudiante pues se considera que el aprendizaje de esta materia está asociado a la experimentación práctica. Además de la asistencia (obligatoria) se evaluarán los siguientes aspectos relativos a la calidad del trabajo del estudiante:

  • Preparación previa y análisis del problema incluyendo un plan de trabajo.
  • Aportar soluciones a los problemas encontrados.
  • Rendimiento y aplicación en las sesiones experimentales.
  • Profundización y nivel del trabajo realizado.
  • Cumplimiento del plan de trabajo.

El trabajo desarrollado por el alumno en las sesiones correspondientes  deberá incluir en formato electrónico una breve memoria con la descripción general del mismo, el material complementario elaborado durante el trabajo (esquemas, planos, software, simulaciones, videos, etc.) y una presentación electrónica que será utilizada por cada alumno para presentar el trabajo en clase. Se podrán incluir prototipos hardware que enriquezcan la presentación. Al comienzo de curso se entregará a los alumnos una descripción detallada del trabajo requerido.

Esta actividad se calificará de 0 a 10 puntos y supondrá el 85% de la calificación del estudiante en la asignatura.

Calificación global:

La asignatura se evaluará en la modalidad de evaluación global mediante las anteriores actividades

4.1. Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

El proceso de enseñanza se desarrollará en tres niveles principales: clases de teoría, problemas y laboratorio, con creciente participación del estudiante.

  • En las clases de teoría se expondrán las bases teóricas de la asignatura.
  • En las clases de problemas se desarrollarán problemas y diseños representativos con la participación de los estudiantes.
  • Se realizarán prácticas de laboratorio en las que se abordarán situaciones o escenarios representativos de EMI/EMC/SE.

4.2. Actividades de aprendizaje

Las actividades de aprendizaje previstas en esta asignatura son las siguientes:

Actividades presenciales (1.96 ECTS, 49 horas):

A01  Clase magistral (20 horas)

En esta actividad se expondrán los contenidos fundamentales de la materia y se realizarán un conjunto de problemas representativos. Esta actividad se realizará en el aula de forma presencial. Los materiales que se expondrán en las clases magistrales estarán a disposición de los alumnos a comienzo de curso.

A02  Resolución de problemas y casos (10 horas):

En esta actividad se resolverá un conjunto de problemas representativos. Esta actividad se realizará en el aula de forma presencial.

A03  Prácticas de laboratorio (15 horas)

Las prácticas están estructuradas en 5 sesiones de 3 horas cada una. Los enunciados de las prácticas estarán a disposición de los alumnos al comienzo de curso. En las horas indicadas se podrán programar alguna visita a laboratorios  de empresas o institutos públicos especializados en materia de EMI/EMC.

A06  Tutela de trabajos (2 horas)

Tutela personalizada profesor-estudiante para los trabajos docentes.

A08  Pruebas de evaluación (2 horas)

La actividad de evaluación comprende la realización del examen y la revisión de las calificaciones del examen y de los trabajos.

Actividades no presenciales (3.04 ECTS, 76 horas):

A06  Trabajos docentes (20 horas)

En esta actividad se realizarán los trabajos relacionados con las sesiones de laboratorio. Los trabajos se realizarán de forma unipersonal o en grupos de un máximo de dos personas en función de la complejidad.

A07  Estudio (56 horas)

Esta actividad comprende tanto el estudio personal encaminado a lograr el seguimiento adecuado de la asignatura, la realización de las prácticas, la preparación del examen y las tutorías.

4.3. Programa

El programa por temas que se propone para alcanzar los resultados de aprendizaje previstos es el siguiente:

DISEÑO ELECTRÓNICO ATENDIENDO A EMI/EMC (75%): Fundamentos e ideas básicas. Generación y acoplamiento de EMI. Masas y tierras. Filtrado en EMI/EMC. Diseño de placas de circuito impreso (PCBs) para EMI e Integridad de Señal. Apantallamiento. Cables en EMI/EMC. Transitorios y protecciones. Complementos en el diseño frente a EMI/EMC. Diagnóstico y solución de problemas EMI. Medida y ensayos para EMC.

SEGURIDAD ELÉCTRICA (25%): los riesgos de un producto electrónico. Normativa. Marcado CE. Equipos electrónicos: clasificación atendiendo a SE. Simbología normalizada. Aislamientos. Materiales. Calentamientos y temperaturas máximas. Separaciones de seguridad. Componentes críticos. PCBs. Cables. Conexión a tierra. Envolventes. Riesgos en equipos con radiofrecuencia (RF). Tipos de ensayos y técnicas de aplicación. La estrategia de diseño: compatibilidad con EMC.

4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave

Calendario de sesiones presenciales y presentación de trabajos

Las clases magistrales y de problemas y las sesiones de prácticas en el laboratorio se imparten según horario establecido por el centro (horarios disponibles en su página web). El resto de actividades se planificará en función del número de alumnos y se dará a conocer con la suficiente antelación.

El calendario detallado de las diversas actividades a desarrollar se establecerá una vez que la Universidad y el Centro hayan aprobado el calendario académico (el cual podrá ser consultado en la página web del centro).

A título orientativo:

  • Período de clases: primer cuatrimestre (Otoño).
  • Clases de teoría y problemas-casos: cada semana hay programadas clases de teoría y/o problemas-casos en el aula.
  • Sesiones prácticas de laboratorio: el estudiante realizará sesiones prácticas de laboratorio y entregará trabajos asociados a las mismas.
  • Entrega de trabajos: se informará adecuadamente en clase de las fechas y condiciones de entrega.
  • Examen: habrá un examen de 1ª convocatoria y otro de 2ª convocatoria en las fechas concretas que indique el centro.